نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      المصدر
    • اللغة
5,878 نتائج ل "Ascorbic Acid - chemistry"
صنف حسب:
Bioactive Compounds and Antioxidant Activity in Different Types of Berries
Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits.
Nutritional and bioactive constituents and scavenging capacity of radicals in Amaranthus hypochondriacus
A. hypochondriacus leaves contained ample phytopigments including betalain, anthocyanin, β-xanthin, β-cyanin, and bioactive phytochemicals of interest in the industry of food. We have been evaluating the possibility of utilizing phytopigments of amaranth and bioactive constituents for making drinks. Therefore, we evaluated bioactive phytopigments and compounds including the potentiality of antioxidants in A. hypochondriacus leaves. A. hypochondriacus leaves have abundant protein, carbohydrates, and dietary fiber. We found considerable levels of inorganic minerals including magnesium, calcium, potassium (3.88, 3.01, 8.56 mg g ), zinc, manganese, copper, iron (16.23, 15.51, 2.26, 20.57 µg g ), chlorophyll b, chlorophyll ab chlorophyll a (271.08, 905.21, 636.87 μg g ), scavenging capacity of radicals (DPPH, ABTS ) (33.46, 62.92 TEAC μg g DW), total polyphenols (29.34 GAE μg g FW), β-xanthin, betalain, β-cyanin (584.71, 1,121.93, 537.21 ng g ), total flavonoids (170.97 RE μg g DW), vitamin C, β-carotene, carotenoids (184.77, 82.34, 105.08 mg 100 g ) in A. hypochondriacus leaves. The genotypes AHC6, AHC4, AHC11, AHC5, and AHC10 had a good scavenging capacity of radicals. Polyphenols, phytopigments, flavonoids, and β-carotene of A. hypochondriacus had potential antioxidant activity. Extracted juice of A. hypochondriacus can be an ample source of phytopigments and compounds for detoxification of reactive oxygen species (ROS) and attaining nutritional and antioxidant sufficiency.
Fabrication and Characteristics of Reduced Graphene Oxide Produced with Different Green Reductants
There has been an upsurge of green reductants for the preparation of graphene materials taking consideration of human health and the environment in recent years. In this paper, reduced graphene oxides (RGOs) were prepared by chemical reduction of graphene oxide (GO) with three green reductants, L-ascorbic acid (L-AA), D-glucose (D-GLC) and tea polyphenol (TP), and comparatively characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectra, Raman spectra and electrical conductivity analysis. Results showed that all these three reductants were effective to remove oxygen-containing functional groups in GO and restore the electrical conductivity of the obtained RGO. The RGO sample with L-ascorbic acid as a reductant and reduced with the existence of ammonia had the highest electrical conductivity (9.8 S·cm(-1)) among all the obtained RGO samples. The mechanisms regarding to the reduction of GO and the dispersion of RGO in water were also proposed. It is the good dispersibility of reduced graphene oxide in water that will facilitate its further use in composite materials and conductive ink.
Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo
Ascorbate (ascorbic acid, vitamin C), in pharmacologic concentrations easily achieved in humans by i.v. administration, selectively kills some cancer cells but not normal cells. We proposed that pharmacologic ascorbate is a prodrug for preferential steady-state formation of ascorbate radical (Asc{bullet}⁻) and H₂O₂ in the extracellular space compared with blood. Here we test this hypothesis in vivo. Rats were administered parenteral (i.v. or i.p.) or oral ascorbate in typical human pharmacologic doses ([almost equal to]0.25-0.5 mg per gram of body weight). After i.v. injection, ascorbate baseline concentrations of 50-100 μM in blood and extracellular fluid increased to peaks of >8 mM. After i.p. injection, peaks approached 3 mM in both fluids. By gavage, the same doses produced ascorbate concentrations of <150 μM in both fluids. In blood, Asc{bullet}⁻ concentrations measured by EPR were undetectable with oral administration and always <50 nM with parenteral administration, even when corresponding ascorbate concentrations were >8 mM. After parenteral dosing, Asc{bullet}⁻ concentrations in extracellular fluid were 4- to 12-fold higher than those in blood, were as high as 250 nM, and were a function of ascorbate concentrations. By using the synthesized probe peroxyxanthone, H₂O₂ in extracellular fluid was detected only after parenteral administration of ascorbate and when Asc{bullet}⁻ concentrations in extracellular fluid exceeded 100 nM. The data show that pharmacologic ascorbate is a prodrug for preferential steady-state formation of Asc{bullet}⁻ and H₂O₂ in the extracellular space but not blood. These data provide a foundation for pursuing pharmacologic ascorbate as a prooxidant therapeutic agent in cancer and infections.
Bioactive Compounds in Brassicaceae Vegetables with a Role in the Prevention of Chronic Diseases
The beneficial role of the Mediterranean diet in the prevention of chronic diseases, including cardiovascular diseases, diabetes, and obesity, is well-recognized. In this context, are considered important vegetables due to several evidences of their health promoting effects that are associated to bioactive compounds present in the edible parts of the plants. In this review, the mechanisms of action and the factors regulating the levels of the bioactive compounds in have been discussed. In addition, the impact of industrial and domestic processing on the amount of these compounds have been considered, in order to identify the best conditions that are able to preserve the functional properties of the products before consumption. Finally, the main strategies used to increase the content of health-promoting metabolites in plants through biofortification have been analyzed.
Selective detection of dopamine with an all PEDOT:PSS Organic Electrochemical Transistor
An all PEDOT:PSS Organic Electrochemical Transistor (OECT) has been developed and used for the selective detection of dopamine (DA) in the presence of interfering compounds (ascorbic acid, AA and uric acid, UA). The selective response has been implemented using a potentiodynamic approach, by varying the operating gate voltage and the scan rate. The trans-conductance curves allow to obtain a linear calibration plot for AA, UA and DA and to separate the redox waves associated to each compound; for this purpose, the scan rate is an important parameter to achieve a good resolution. The sensitivities and limits of detection obtained with the OECT have been compared with those obtained by potential step amperometric techniques (cyclic voltammetry and differential pulse voltammetry), employing a PEDOT:PSS working electrode: our results prove that the all-PEDOT:PSS OECT sensitivities and limits of detection are comparable or even better than those obtained by DPV, a technique that employs a sophisticate potential wave and read-out system in order to maximize the performance of electrochemical sensors and that can hardly be considered a viable readout method in practical applications.
Redox Interactions of Vitamin C and Iron: Inhibition of the Pro-Oxidant Activity by Deferiprone
Ascorbic acid (AscH ) is one of the most important vitamins found in the human diet, with many biological functions including antioxidant, chelating, and coenzyme activities. Ascorbic acid is also widely used in a medical practice especially for increasing the iron absorption and as an adjuvant therapeutic in the iron chelation therapy, but its mode of action and implications in the iron metabolism and toxicity are not yet clear. In this study, we used UV-Vis spectrophotometry, NMR spectroscopy, and EPR spin trapping spectroscopy to investigate the antioxidant/pro-oxidant effects of ascorbic acid in reactions involving iron and the iron chelator deferiprone (L1). The experiments were carried out in a weak acidic (pH from 3 to 5) and neutral (pH 7.4) medium. Ascorbic acid exhibits predominantly pro-oxidant activity by reducing Fe to Fe , followed by the formation of dehydroascorbic acid. As a result, ascorbic acid accelerates the redox cycle Fe ↔ Fe in the Fenton reaction, which leads to a significant increase in the yield of toxic hydroxyl radicals. The analysis of the experimental data suggests that despite a much lower stability constant of the iron-ascorbate complex compared to the FeL1 complex, ascorbic acid at high concentrations is able to substitute L1 in the FeL1 chelate complex resulting in the formation of mixed L1 AscFe complex. This mixed chelate complex is redox stable at neutral pH = 7.4, but decomposes at pH = 4-5 during several minutes at sub-millimolar concentrations of ascorbic acid. The proposed mechanisms play a significant role in understanding the mechanism of action, pharmacological, therapeutic, and toxic effects of the interaction of ascorbic acid iron, and L1.
Synthesis of Au/graphene oxide composites for selective and sensitive electrochemical detection of ascorbic acid
In this work, we present a novel ascorbic acid (AA) sensor applied to the detection of AA in human sera and pharmaceuticals. A series of Au nanoparticles (NPs) and graphene oxide sheets (Au NP/GO) composites were successfully synthesized by reduction of gold (III) using sodium citrate. Then the Au NP/GO composites were used to construct nonenzymatic electrodes in practical AA measurement. The electrode that has the best performance presents attractive analytical features, such as a low working potential of +0.15 V, a high sensitivity of 101.86 μA mM(-1) cm(-2) to AA, a low detection limit of 100 nM, good reproducibility and excellent selectivity. And more,it was also employed to accurately and practically detect AA in human serum and clinical vitamin C tablet with the existence of some food additive. The enhanced AA electrochemical properties of the Au NP/GO modified electrode in our work can be attributed to the improvement of electroactive surface area of Au NPs and the synergistic effect from the combination of Au NPs and GO sheets. This work shows that the Au NP/GO/GCEs hold the prospect for sensitive and selective determination of AA in practical clinical application.
Determination of Ascorbic Acid, Total Ascorbic Acid, and Dehydroascorbic Acid in Bee Pollen Using Hydrophilic Interaction Liquid Chromatography-Ultraviolet Detection
Ascorbic acid (AA) is one of the essential nutrients in bee pollen, however, it is unstable and likely to be oxidized. Generally, the oxidation form (dehydroascorbic acid (DHA)) is considered to have equivalent biological activity as the reduction form. Thus, determination of the total content of AA and DHA would be more accurate for the nutritional analysis of bee pollen. Here we present a simple, sensitive, and reliable method for the determination of AA, total ascorbic acids (TAA), and DHA in rape ( ), lotus ( and camellia ( ) bee pollen, which is based on ultrasonic extraction in metaphosphoric acid solution, and analysis using hydrophilic interaction liquid chromatography (HILIC)-ultraviolet detection. Analytical performance of the method was evaluated and validated, then the proposed method was successfully applied in twenty-one bee pollen samples. Results indicated that contents of AA were in the range of 17.54 to 94.01 µg/g, 66.01 to 111.66 µg/g, and 90.04 to 313.02 µg/g for rape, lotus, and camellia bee pollen, respectively. In addition, percentages of DHA in TAA showed good intra-species consistency, with values of 13.7%, 16.5%, and 7.6% in rape, lotus, and camellia bee pollen, respectively. This is the first report on the discriminative determination between AA and DHA in bee pollen matrices. The proposed method would be valuable for the nutritional analysis of bee pollen.
Acceleration of reaction in charged microdroplets
Using high-resolution mass spectrometry, we have studied the synthesis of isoquinoline in a charged electrospray droplet and the complexation between cytochrome c and maltose in a fused droplet to investigate the feasibility of droplets to drive reactions (both covalent and noncovalent interactions) at a faster rate than that observed in conventional bulk solution. In both the cases we found marked acceleration of reaction, by a factor of a million or more in the former and a factor of a thousand or more in the latter. We believe that carrying out reactions in microdroplets (about 1–15 μm in diameter corresponding to 0·5 pl – 2 nl) is a general method for increasing reaction rates. The mechanism is not presently established but droplet evaporation and droplet confinement of reagents appear to be two important factors among others. In the case of fused water droplets, evaporation has been shown to be almost negligible during the flight time from where droplet fusion occurs and the droplets enter the heated capillary inlet of the mass spectrometer. This suggests that (1) evaporation is not responsible for the acceleration process in aqueous droplet fusion and (2) the droplet–air interface may play a significant role in accelerating the reaction. We argue that this ‘microdroplet chemistry’ could be a remarkable alternative to accelerate slow and difficult reactions, and in conjunction with mass spectrometry, it may provide a new arena to study chemical and biochemical reactions in a confined environment.